RCRA RECORDS CENTER
FACILITY BAIL + Socket MCG
I.D. NO. CTD OOI 1 67 493
FILE LOC. R-13
OTHER # 103230

DOCUMENTATION OF ENVIRONMENTAL INDICATOR DETERMINATION

Interim Final 2/5/99

RCRA Corrective Action Environmental Indicator (EI) RCRIS code (CA750)

Migration of Contaminated Groundwater Under Control

Facility Name:

Ball and Socket Manufacturing Co. (former)

Facility Address:

493 West Main Street, Cheshire, CT 06410

Facility EPA ID #: CTD001167493

1. Has all available relevant/significant information on known and reasonably suspected releases to the groundwater media, subject to RCRA Corrective Action (e.g., from Solid Waste Management Units (SWMU), Regulated Units (RU), and Areas of Concern (AOC)), been considered in this EI determination?

Y	If yes - check here and continue with #2 below.
	If no - re-evaluate existing data, or
	if data are not available, skip to #8 and enter"IN" (more information needed) status code.

1032

BACKGROUND

Definition of Environmental Indicators (for the RCRA Corrective Action)

Environmental Indicators (EIs) are measures being used by the RCRA Corrective Action program to go beyond programmatic activity measures (e.g., reports received and approved, etc.) to track changes in the quality of the environment. The two EIs developed to-date indicate the quality of the environment in relation to current human exposures to contamination and the migration of contaminated groundwater. An EI for non-human (ecological) receptors is intended to be developed in the future.

Definition of "Current Human Exposures Under Control" EI

A positive "Current Human Exposures Under Control" EI determination ("YE" status code) indicates that there are no "unacceptable" human exposures to "contamination" (i.e., contaminants in concentrations in excess of appropriate risk-based levels) that can be reasonably expected under

current land- and groundwater-use conditions (for all "contamination" subject to RCRA corrective action at or from the identified facility (i.e., site-wide)).

Relationship of EI to Final Remedies

While Final remedies remain the long-term objective of the RCRA Corrective Action program the EIs are near-term objectives which are currently being used as Program measures for the Government Performance and Results Act of 1993, (GPRA). The "Current Human Exposures Under Control" EI are for reasonably expected human exposures under current land- and groundwater-use conditions ONLY, and do not consider potential future land- or groundwater-use conditions or ecological receptors. The RCRA Corrective Action program's overall mission to protect human health and the environment requires that Final remedies address these issues (i.e., potential future human exposure scenarios, future land and groundwater uses, and ecological receptors).

Duration / Applicability of EI Determinations

EI Determinations status codes should remain in the RCRIS national database ONLY as long as they remain true (i.e., RCRIS status codes must be changed when the regulatory authorities become aware of contrary information).

FACILITY INFORMATION

Site History/Background

The Ball and Socket Manufacturing Co. (former) site is located at 493 West Main Street in Cheshire, New Haven County, Connecticut. The Ball and Socket site includes the former Ball and Socket Facility property (which consists of approximately 3.02 acres), the former Ball and Socket Lagoon property (which consists of approximately 3.7 acres), and the abutting property formerly owned by the Pennsylvania Central Railroad (which consists of approximately 3.62 acres).

The Town of Cheshire Tax Assessor's Office lists the owner of the Facility, Lagoon, and railroad properties as Dalton Enterprises, Inc. (Dalton). Structures on the Ball and Socket Facility property were constructed circa 1850, and, along with the Lagoon property, were owned and operated by Ball and Socket until 1996. Dalton purchased the three properties in 1996. Buildings on the Facility property are connected to municipal water and sewer and are heated by oil. The former railroad property has been developed by Dalton since purchasing the property as a gravel access road for transport trucks. A vehicle gate separates the property, and subsequently the site, north of the former Lagoon property.

The Facility property is occupied by five buildings and are referred to their former use including the maintenance, facility, industrial wastewater treatment plant (IWTP), storage, and former boiler house buildings. The facility building was used for manufacturing metal-plated and fabric-covered buttons

for garments, automobiles, and upholstery from 1850 to 1996. An asphalt paved parking lot surrounds the buildings, except to the west of the facility building which is grass covered. The Cheshire Canal is located along the western property boundary and flows from the northeast to southwest and discharges to Willow Brook approximately 3,500 feet downstream. A process well formerly used for site process water is located adjacent to the facility building. Commercial properties are located to the west, across the canal. Residential properties are located to the east across Willow Street and to the south.

The Lagoon property is bordered by Willow Street to the east, a retail lumber company to the north, a landscaping business and furniture refinishing business to the northeast, Dalton, a manufacturer of pavement sealing compounds, to the south, and Willow Brook to the west. The canal flows north-south through the eastern portion of the Lagoon property.

The button manufacturing process included the cutting and stamping of steel and brass sheet metal, cleaning, followed by electroplating with nickel, brass, or gold. In 1945, solvent degreasing was first introduced as part of the cleaning process. From 1945 to 1950, trichloroethene (TCE) was used as the solvent. In 1950, tetrachloroethene (PCE) was used as the solvent in the cleaning process and was stored in a 600-gallon aboveground storage tank (AST) adjacent to the facility building. By 1992, the cleaning process involved the use of 1,1,1-trichloroethane (TCA) vapor degreaser.

After metal products were electroplated, they were rinsed with solvents. Metal products were also smoothed and polished in tumblers. The rinse waters from both of these processes were combined and composed the Ball and Socket facility wastewater.

Before 1958, wastewater from the Facility property was discharged directly to the canal. Between 1958 and 1970, the wastewater was discharged via a 1,500 foot ceramic pipe to a 0.75-acre unlined lagoon located on the Lagoon property.

On August 21, 1967, Ball and Socket received Order No. 303 from the CTDEP Water Resources Commission to abate pollution of the waters of Connecticut. Refer to the Site Investigation and Interim Measures section for further details.

During the early 1970s, the unused former lagoon was filled in with brown fine-grained sand obtained from excavation activities related to a Town of Cheshire sewer installation project. In addition, solid waste has been reportedly dumped illegally on the Lagoon property since the early 1970s.

In June 1984, a new IWTP was constructed on the Facility property and use of the three surface impoundments ceased. The new IWTP generated metal hydroxide sludge which was sent off site for copper and nickel reclamation. The new IWTP treated effluent was discharged to the Town of Cheshire sewer system under CTDES Permit No. WPC-025-006 issued April 12, 1984.

In 1989, a PCE degreasing unit was removed from the solvent management area in the facility

building. During the removal, the concrete sump of the unit was observed to be cracked and leaking solvent assumed to contain PCE directly to the underlying soils. Subsequent investigation (see below) identified PCE groundwater contamination.

In 1991, Ball and Socket submitted to EPA a Post-Closure Part B Application for the three surface impoundments. In accordance with the Part B application, post-closure groundwater monitoring has been conducted for this source. In 1997, Dalton requested of CTDEP to reduce the sample frequency to semi-annually and to reduce the analytical parameter list. In 1998, CTDEP granted Dalton their request.

In 1992, Ball and Socket installed an extraction well groundwater treatment system and conducted a pilot test to determine the system's feasibility. Refer to the Site Investigation and Interim Measures section for further details.

In 2005, Tetra Tech NUS, Inc. (TtNUS) conducted a series of field sampling events on the site in support of this RCRA EI determination. Refer to the Site Investigation and Interim Measures section for further details.

Site Geology and Hydrogeology

The site is located in an area of ground moraine deposits overlying (Triassic) New Haven Arkose. This bedrock unit is an arkose sandstone interbedded with conglomerates and siltstone. The Facility property stratigraphy consists of 4 to 11 feet of sand with varying amounts of silt, clay, and gravel. Bedrock is located from 4 to 11 feet bgs across the Facility property. The Lagoon property stratigraphy consists of sand and gravel to a minimum of 25 feet bgs based on boring logs. Bedrock depth is unknown on the Lagoon property.

Surface water within 1 mile of the site includes the canal and Willow Brook. The canal has been identified as a groundwater discharge point near the facility and former boiler house buildings. The nearest residence is approximately 150 feet west of the facility building. Municipal drinking water for the Town of Cheshire is provided by the South Central Regional Water Authority (SCRWA). The SCRWA has two well fields located in the Town of Cheshire that are blended together and provide drinking water to the Towns of Cheshire and Hamden. The two well fields are located within 2- to 3-radial miles and 3- to 4-radial miles from the site.

The groundwater table varies across the site from approximately 1 to 6.5 feet bgs. The direction of overburden groundwater flow across the site is to the southwest. Overburden groundwater has been identified as hydrologically connected to the bedrock via the on-site process well. As a result, the bedrock aquifer is contaminated with PCE. Additionally, overburden groundwater is hydrologically connected to the sewer system and the PCE plume is entering the sewer near extraction well E-9 (see GZA Figure 2 in Attachment B). The overburden groundwater is also hydrologically connected to the canal near the facility building. Refer to the Site Investigation and Interim Measures section for additional information.

A municipal sewer line is buried west of the canal and traverses a north-south route on the Ball and Socket site. The sewer line is located within a 4 foot wide trench in the bedrock and located approximately 8.5 to 11 feet bgs. Based on the Town of Cheshire Engineering Department Municipal Sewer drawings, bedrock is located approximately 4 to 10 feet bgs between passive soil gas samples 470600 and 470587 (see Gore Tetrachloroethylene Figure in Attachment A). Based on the passive soil gas data collected during the TtNUS sampling events, the sewer line acts as a preferential pathway.

Areas of Concern

On April 1, 1992, an CDM completed a RCRA Facility Assessment for the Ball and Socket site. Solid Waste Management Units (SWMUs) and Areas of Concern (AOCs) were identified in the assessment collectively as AOCs. The 13 identified AOCs included: the three unlined surface impoundments; a metal hydroxide sludge accumulation area in wastewater treatment building; a drum accumulation area in wastewater treatment building; a total of five separate drum satellite collection areas within the facility building; a former discharge pipe to the canal; a former lagoon; a solvent management area; floor drains; and surface water discharge pipes from the Facility property parking area to the canal.

The five drum satellite collection areas were used to temporarily store wastes prior to moving the drums to the drum accumulation area. The drum accumulation area was within a concrete bermed area with a metal liner. The 1992 Facility Assessment summarized the 13 AOCs into three known source areas based on historical analytical data: the three unlined surface impoundments; the former lagoon; and the solvent management area. These three source areas are described in greater detail below.

The three unlined surface impoundments had a capacity of 36,000 gallons each and were formerly used to dewater untreated wastewater from the Ball and Socket operations. The surface impoundments operated from 1970 to June 1984. The sludge and underlying soils were excavated from the surface impoundments in 1985. Analytical results of confirmatory soil samples indicated concentrations of PCE were below 10 ppb. On November 5, 1985, CTDEP submitted a "Clean closed" letter for the surface impoundments to Ball and Socket, and on June 18, 1986, EPA submitted a "Clean closed" letter for the surface impoundments to Ball and Socket.

The <u>former lagoon</u> has been estimated to be 0.75 acres and was used from 1958 to 1970. The former lagoon received wastewater from the Ball and Socket processes via an underground ceramic pipe. Wastewater would evaporate, or percolate into the groundwater, or overflow into the Willow Brook. In 1984, approximately 1,000 cubic yards of VOCs and metals contaminated soils were removed from the former lagoon. In 1994, the terminus of the ceramic pipe was identified by Ball and Socket and removed. The remainder of the ceramic pipe is still underground on site.

The <u>solvent management area</u> was located in the eastern section of the facility building. The historical degreasers (TCA, TCE, and PCE) were used in the solvent management area. In August

1992, GZA GeoEnvironmental, Inc. completed a report titled 'Solvent Management Area Study' for the property owner that included a subsurface investigation and pilot test of an extraction system. The subsurface investigation included a soil gas survey, sub-slab soil sampling in the solvent management area, soil boring and monitoring well installations, hydrophysical logging of the Facility's process well, groundwater probe installations, and extraction well installations for a treatment system. Groundwater samples were analyzed for volatile organic compounds (VOCs) only. GZA delineated the PCE groundwater plume and identified that concentrations ranged up to 130,000 ppb. In addition to PCE, five other VOCs were detected including TCE; 1,2-DCE; 1,1-DCE; vinyl chloride (VC); and 1,1,1-TCA. Two groundwater anomalies were noted by GZA in the overburden: the process well effected the overburden groundwater flow direction when it was pumped; and, the groundwater near extraction well E-9 was entering the sanitary sewer system. GZA concluded that 23 feet below ground surface (bgs) there is a suspected inflow in the process well casing from overburden groundwater that provides 23% of the total process well water production. Laboratory analyses of aqueous samples collected from the sewer in the vicinity of E-9 detected PCE (1,000 ppb). GZA recommended operating the groundwater treatment extraction system at a rate of 1,400 to 3,600 gallons per day to provide containment of the PCE plume and the discharge of the PCE plume into the sewer near E-9.

Site Investigations and Interim Measures

Numerous phases of investigation and remedial actions have been conducted at the site. Some of the major activities and reports are summarized below.

On August 21, 1967, Ball and Socket received Order No. 303 from the CTDEP Water Resources Commission to abate pollution of the waters of Connecticut. As a result of the Order, Ball and Socket contracted an engineering firm to design an IWTP. The IWTP was designed for a flow of 30,000 gallons per day and included a cyanide oxidation tank, chlorination tank, and three unlined surface impoundments. In December 1970, construction of the IWTP was completed and wastewater discharge to the Lagoon property ceased. The surface impoundments were located south of the former boiler house building and were annually dredged to remove the sludge that was dewatered by evaporation and infiltration to the ground. Discharge into the three surface impoundments was conducted under NPDES Permit No. 0020877. Between 1979 and 1983, approximately 195,000 gallons of sludge was removed from the three surface impoundments and was disposed of off site.

In January 1984, Ball and Socket installed a groundwater monitoring system approved by CTDEP and EPA to monitor groundwater in the vicinity of the surface impoundments. Quarterly groundwater monitoring has been conducted on the Facility property since January 1984. The original RCRA quarterly monitoring analyses included: RCRA metals, chloride, cyanide, fluoride, iron, nitrate, pH, specific conductance, sulfate, and VOCs. Monitoring parameters have been adjusted over time. Based on the annual groundwater report by Triton Environmental, Inc. dated January 2003, groundwater was analyzed for halogenated VOCs, six dissolved metals (iron, lead, chromium, copper, nickel, and zinc), and total cyanide. In April 1998, CTDEP approved a reduction in the frequency of the monitoring to semi-annual. Historical groundwater monitoring has

documented concentrations of PCE, TCE, cis-1,2-dichloroethene (cis-1,2-DCE), 1,1-DCE, and vinyl chloride above EPA maximum concentration limits (MCLs) and CTDEP Groundwater Protection Criteria.

On April 1, 1992, an EPA contractor completed a Final Draft RCRA Facility Assessment for the Facility property. The report concluded that the Facility property operations had documented contamination of soil, groundwater, and surface water. The sources of this contamination were identified as the solvent management area, surface impoundments, and the former lagoon. Recommendations included additional investigation of the solvent management storage area, the former ceramic wastewater discharge pipe, and the surface impoundments 'clean closure' activities including the Part B Post Closure Permit Application filed in February 1991. Additionally, an EPA contractor recommended coordination between EPA RCRA and CERCLA personnel to address contamination on the Lagoon property. Additional investigation was also recommended for the floor drains, surface runoff discharge pipes, and prior practices at the drum storage area at the IWTP.

In August 1992, as discussed in the Areas of Concern section above, Ball and Socket completed a subsurface investigation on the Facility property. Based on this investigation, Ball and Socket identified that the sewer line acts as a groundwater sink at E-9 and a portion of the groundwater PCE plume is entering the sewer. Depth to groundwater ranged from 1 to 3 feet bgs across the Facility property.

In 1994, an EPA contractor completed a SI Prioritization (SIP) report for the Lagoon property. No media was sampled during the SIP. The SIP reported that approximately 2,500 cubic yards, which varies from a previous report, of metal and VOC contaminated soil was removed from the Lagoon property. The SIP identified that the Lagoon property was a source of PCE that had likely contaminated groundwater beneath the site.

In July 1994, Ball and Socket completed an Environmental Site Assessment (ESA) of the Lagoon property. Soil, groundwater, surface water, and sediment samples were collected during the ESA. The surface water and sediment samples were collected from the canal. Test pits were completed to identify the location of the ceramic discharge pipe. The location of the ceramic discharge pipe was identified and one section of the pipe was removed. Soil samples were collected from the end of the discharge pipe and one from within the pipe.

The aqueous samples collected durign the 1994 ESA, were analyzed for metals, VOCs, total and amenable cyanide, and phenols. The soil and sediment samples were analyzed for metals, TCLP RCRA metals, VOCs, PAHs, total and amenable cyanide, and TPH. PCE was detected in the groundwater samples ranging in concentration from 5 to 29 ppb. PCE was detected in an upstream surface water sample (15 ppb) collected at the northern end of the Lagoon property and the downstream sample (8 ppb)collected at the southern end of the Lagoon property. Laboratory analyses of the soil samples collected from the end of the ceramic discharge pipe detected TPH (5,800 ppm), nine PAHs, total and amenable cyanide (each at 15 ppm), PCE (55 ppb), arsenic (52.8 ppm), barium (539 ppm), chromium (138 ppm), copper (3,710 ppm), lead (195 ppm), nickel (450

ppm), and zinc (353 ppm) above the background sample. Laboratory analyses of sediment samples detected chromium (44 ppm), copper (3,470 ppm), lead (280 ppm), nickel (479 ppm), and zinc (245 ppm).

During February 21-22, March 14-17, and March 30, 2005, Tetra Tech NUS, Inc. (TtNUS) team personnel collected 11 groundwater drinking water samples from private wells, three sediment samples from Willow Brook and the canal, 20 vapor diffusion samples from Willow Brook, and 51 passive soil gas samples from the site ,not including quality assurance/quality control (QA/QC) samples, as part of the Ball and Socket Site Inspection (SI) to document the presence and/or absence of chemical contamination. Groundwater drinking water and associated QA/QC samples were submitted to a preselected laboratory, for VOCs analysis only. Sediment and associated QA/QC samples were submitted to preselected laboratories, for VOCs and metals analysis. The passive soil gas and associated QA/QC samples were submitted to a preselected laboratory, with chain of custody forms, for chlorinated solvent VOCs analysis. The passive vapor diffusion and associated QA/QC samples were submitted to the EPA Region I mobile laboratory, for TCE, PCE, and 1,1-DCE analysis. On March 30, 2005, during the TtNUS sampling event, EPA personnel collected three active soil gas samples and analyzed the samples for TCE, PCE, and 1,1-DCE in the EPA Region I mobile laboratory. Refer to Table 1 for a summary of sediment sample data and Table 2 for a summary of residential groundwater drinking water samples. Refer to Figure 1 for a site locus and Figure 2 for sample locations. Refer to Attachment A for a summary table of analytical data for passive vapor diffusion samples and active soil gas samples and three figures containing passive soil gas data for TCE, PCE, and 1,1-DCE.

Current Site Conditions

The Facility property is currently used for storage of dry goods and a pavement sealant manufactured by Dalton. Dalton maintains a pump and treat system that includes 11 extraction wells and the former production well. Based on conversations with a Dalton representative during the TtNUS sampling event, a new well located in the solvent management area, has been added to the treatment system. The treatment system consists of pumping the groundwater through activated carbon filters and discharging the water to the municipal sewer. Refer to GZA Figure 2 in Attachment B for extraction well locations.

Bi-annual groundwater monitoring for VOCs, dissolved metals, and cyanide analysis for the former surface impoundments is conducted. Based on the 2004 Annual Report, no apparent contaminant concentration trend in the past 5.5 years of data exists with the exception of an upward trend for tetrachloroethene concentrations. CTDEP has categorized groundwater under the site as GB/GA. GA groundwater classification is for existing or potential private drinking water sources. The GB groundwater classification is not suitable for drinking without treatment. The CTDEP has not established a GB Groundwater Protection Criteria. The GB/GA category identifies that the site groundwater is contaminated with a cleanup goal of GA. Refer to the Triton Environmental, Inc. Figure 2 depicting the monitoring wells sampled in Attachment B, a summary table of the 2004 data, and a summary table of data from 1999 to 2002.

The Lagoon property is currently a gravel parking area with a loading dock and some asphalt paved areas used by Dalton for storage of pavement sealant and transport loading area. No groundwater monitoring is conducted for the former lagoon source. Only monitoring well MW-4R is located on the Lagoon property and is located north of the former lagoon location.

2. Is **groundwater** known or reasonably suspected to be "contaminated" above appropriately protective "levels" (i.e., applicable promulgated standards, as well as other appropriate standards, guidelines, guidance, or criteria) from releases subject to RCRA Corrective Action, anywhere at, or from, the facility?

<u>X</u>	If yes - continue after identifying key contaminants, citing appropriate "levels," and referencing supporting documentation.
	If no - skip to #8 and enter "YE" status code, after citing appropriate "levels," and referencing supporting documentation to demonstrate that groundwater is not "contaminated."
	If unknown - skip to #8 and enter "IN" status code.

Rationale and Reference(s):

Footnotes:

¹"Contamination" and "contaminated" describes media containing contaminants (in any form, NAPL and/or dissolved, vapors, or solids, that are subject to RCRA) in concentrations in excess of appropriate "levels" (appropriate for the protection of the groundwater resource and its beneficial uses).

References used for this determination include the reports listed below:

Subsurface and Groundwater Quality Investigations, Ball and Socket Manufacturing Co., by Flaherty-Giavara Associates, Inc. (May 1984)

Groundwater Evaluation, Ball and Socket Manufacturing Company, by GCA Corporation (June 1985)

RCRA Facility Assessment, The Ball and Socket Manufacturing Company, Inc., by CDM Federal Programs Corporation (April 1, 1992)

Solvent Management Study Area, Ball and Socket Manufacturing Company, Inc., by GZA GeoEnvironmental, Inc. (August 1992)

Environmental Site Assessment, Former Willow Street Lagoon, by Environmental Risk Limited (July 1994)

Site Inspection Prioritization Report, Ball and Socket Lagoons, by CDM Federal Programs Corporation (July 5, 1994)

2002 Annual Groundwater Monitoring Report, Former Ball and Socket Manufacturing Company Facility, by Triton Environmental, Inc. (January 2003)

2004 Annual Groundwater Monitoring Report, Former Ball and Socket Manufacturing Company Facility, by Advanced Environmental Interface, Inc. (January 2005)

The appropriately protective risk-based "levels" (applicable promulgated standards) used in this EI are the Connecticut Department of Environmental Protection (CTDEP) Remediation Standard Regulation (RSR). As mentioned earlier, CTDEP has classified the site groundwater as GB/GA, which is subject to cleanup to GA groundwater classification standards. For this EI determination, the applicable groundwater categories are GA Protection Criteria, Surface Water Protection Criteria for Substances in Groundwater, and Industrial/Commercial Volatilization Criteria. Data used for comparison to the above standards are the 1984, 1992, 2000 through 2004 groundwater data, and the TtNUS SI residential groundwater drinking water sample data, which were collected during and after site investigation and remediation efforts. Supplemental data includes the passive soil gas and vapor diffusion samples collected during the TtNUS SI.

The closest private well is located approximately 500 feet southwest of the Lagoon property at 91 Willow Street. Five private drinking water wells are located on Hemlock Ridge, and seven on Oak Avenue. The CHESPROCOTT Heath District has collected samples from some private drinking water wells located on Oak Avenue and Hemlock Ridge. Laboratory analyses for samples collected in 1995 detected 1,1,1-TCA (0.5 ug/l) in the private well at 138 Oak Avenue. The 1995 data also identified 1,1,1-TCA in private drinking water wells at both 150 and 164 Oak Avenue at concentrations less than 0.5 ug/l. The most recent data for 138 Oak Avenue reviewed is from an April 2002 sampling event. This data indicated that 1,1-DCA; 1,1-DCE; 1,1,1-TCA; PCE; and TCE concentrations were all less than 0.5 ug/l.

In 1992, PCE was detected in the groundwater on the site at concentrations ranging up to 130,000 ppb, which is above the GA Groundwater Protection Criteria (5 ppb), the Industrial/Commercial Volatilization Criteria (3,820 ppb), and the Surface Water Protection Criteria (88 ppb).

Based on the 11 TtNUS residential groundwater drinking water samples collected in February 2005, concentrations of PCE (0.12 to 0.85 ppb) and TCE (0.11 to 0.28 ppb) were detected in three of the residential wells sampled, and 1,1-DCA (0.10 to 0.11 ppb) was detected in two of the residential wells sampled. The residences located at 138 Oak Avenue (GW-DW-10), 146 Oak Avenue (GW-DW-02), and 150 Oak Avenue (GW-DW-01) were the sample locations that had detectable concentrations of contaminants attributable to the Ball & Socket site.

Based on the TtNUS Grid A passive soil gas data, the groundwater pump and treat system appears to be containing the overburden groundwater plume. However, based on the August 1992 report and the passive soil gas data for Grid A in proximity to the sewer man hole, a portion of the VOC plume enters the sewer at extraction well E-9. Additionally, based on the TtNUS Grid B passive soil gas data, the VOC plume migrates along the sewer line. Refer to Figure 2 for the grid locations.

Based on the TtNUS passive vapor diffusion sample data and the residential groundwater drinking water sample data from GW-DW-11, which had no detected concentrations above the sample quantitation limit, the VOC plume appears to extend to and discharge into Willow Brook.

The most recent groundwater sampling data was collected in 2004, as part of the semi-annual groundwater monitoring program for the former surface impoundments and documented in an Annual Summary Report. The contaminants PCE, TCE, VC, and cis-1,2-DCE were detected in the

groundwater samples at concentrations above the GA Groundwater Protection Criteria (5 ppb, 5 ppb, 2 ppb, and 70 ppb, respectively). At least one of these contaminants was detected in seven of the nine monitoring wells sampled. VC was detected above the Residential Volatilization Criteria (1.6 ppb) in four different monitoring wells ranging in concentrations from 2.9 to 7.5 ppb. PCE was detected in two monitoring wells sampled in 2004 above the Surface Water Protection Criteria.

3.	Has the migration of contaminated groundwater stabilized (such that contaminated groundwater is expected to remain within "existing area of contaminated groundwater" as defined by the monitoring locations designated at the time of this determination)?
	X If yes - continue, after presenting or referencing the physical evidence (e.g., groundwater sampling/measurement/migration barrier data) and rationale why contaminated groundwater is expected to remain within the (horizontal or vertical) dimensions of the "existing area of groundwater contamination" ²).
	If no (contaminated groundwater is observed or expected to migrate beyond the designated locations defining the "existing area of groundwater contamination" ²) - skip to #8 and enter "NO" status code, after providing an explanation.
	If unknown - skip to #8 and enter "IN" status code.
	Rationale and Reference(s):

Footnotes:

² "existing area of contaminated groundwater" is an area (with horizontal and vertical dimensions) that has been verifiably demonstrated to contain all relevant groundwater contamination for this determination, and is defined by designated (monitoring) locations proximate to the outer perimeter of "contamination" that can and will be sampled/tested in the future to physically verify that all "contaminated" groundwater remains within this area, and that the further migration of "contaminated" groundwater is not occurring. Reasonable allowances in the proximity of the monitoring locations are permissible to incorporate formal remedy decisions (i.e., including public participation) allowing a limited area for natural attenuation.

References used for this determination include the reports listed below:

2002 Annual Groundwater Monitoring Report, Former Ball and Socket Manufacturing Company Facility, by Triton Environmental, Inc. (January 2003)

2004 Annual Groundwater Monitoring Report, Former Ball and Socket Manufacturing Company Facility, by Advanced Environmental Interface, Inc. (January 2005)

The TtNUS Grid A passive soil gas data appears to identify that the extraction well treatment system is containing the overburden groundwater plume originating from the solvent management area.

However, the groundwater plume enters the sewer system near extraction well E-9. The bedrock groundwater plume is also treated by the extraction well treatment system via the production well. Based on the residential groundwater drinking water samples collected by TtNUS, and the historical concentrations of VOCs detected in samples collected from the residential wells on Oak Avenue, the concentrations of the VOCs have fluctuated, but have no apparent trend.

Based on the 2004 Annual Groundwater Monitoring Report, data for VOC "concentrations have fluctuated, but generally have either decreased or shown no apparent trend" over the past 5.5 years with the exception of PCE. PCE data has indicated an upward trend for monitoring wells MW-4/MW-4R and GZ-2. It is noted that MW-4R was installed in 2004, to replace MW-4 that was damaged during property development activities in 2002.

Based on the TtNUS passive vapor diffusion samples collected along Willow Brook, VOCs are discharging into the stream. Therefore, the Willow Brook acts as a barrier for the groundwater plume. Additional supporting data for this is the fact that no VOCs were detected in the residential groundwater drinking water sample collected from 91 Willow Avenue (GW-DW-11).

4.	Does "contaminated" groundwater discharge into surface water bodies?
	Y If yes - continue after identifying potentially affected surface water bodies
•	If no - skip to #7 (and enter a "YE" status code in #8, if #7 = yes) after providing an explanation and/or referencing documentation supporting that groundwater "contamination" does not enter surface water bodies.
	If unknown - skip to #8 and enter "IN" status code.

Rationale and Reference(s):

References used for this determination include the reports listed below:

Solvent Management Study Area, Ball and Socket Manufacturing Company, Inc., by GZA GeoEnvironmental, Inc. (August 1992)

2002 Annual Groundwater Monitoring Report, Former Ball and Socket Manufacturing Company Facility, by Triton Environmental, Inc. (January 2003)

2004 Annual Groundwater Monitoring Report, Former Ball and Socket Manufacturing Company Facility, by Advanced Environmental Interface, Inc. (January 2005)

As mentioned above, contaminated groundwater discharges into Willow Brook, which acts as a barrier for the VOC plume. The groundwater in the vicinity of the facility building has been documented to be hydrologically connected to the canal. However, the extraction well system appears to be capturing the VOC plume in this area. Based on the TtNUS Grid B passive soil gas data, the canal does not appear to be a barrier to the VOC plume originating from the surface impoundments.

- 5. Is the **discharge** of "contaminated" groundwater into surface water likely to be "insignificant" (i.e., the maximum concentration³ of each contaminant discharging into surface water is less than 10 times their appropriate groundwater "level," and there are no other conditions (e.g., the nature, and number, of discharging contaminants, or environmental setting), which significantly increase the potential for unacceptable impacts to surface water, sediments, or eco-systems at these concentrations)?
 - Y If yes skip to #7 (and enter "YE" status code in #8 if #7 = yes), after documenting: 1) the maximum known or reasonably suspected concentration of key contaminants discharged above their groundwater "level," the value of the appropriate "level(s)," and if there is evidence that the concentrations are increasing; and 2) provide a statement of professional judgement/explanation (or reference documentation) supporting that the discharge of groundwater contaminants into the surface water is not anticipated to have unacceptable impacts to the receiving surface water, sediments, or eco-system.
 - If no (the discharge of "contaminated" groundwater into surface water is potentially significant) continue after documenting: 1) the maximum known or reasonably suspected concentration³ of <u>each</u> contaminant discharged above its groundwater "level," the value of the appropriate "level(s)," and if there is evidence that the concentrations are increasing; and 2) for any contaminants discharging into surface water in concentrations³ greater than 100 times their appropriate groundwater "levels," the estimated total amount (mass in kg/yr) of each of these contaminants that are being discharged (loaded) into the surface water body (at the time of the determination), and identify if there is evidence that the amount of discharging contaminants is increasing.

_____ If unknown - enter "IN" status code in #8.

Rationale and Reference(s):

References used for this determination include the reports listed below:

Solvent Management Study Area, Ball and Socket Manufacturing Company, Inc., by GZA GeoEnvironmental, Inc. (August 1992)

Environmental Site Assessment, Former Willow Street Lagoon, by Environmental Risk Limited (July 1994)

Site Inspection Prioritization Report, Ball and Socket Lagoons, by CDM Federal Programs Corporation (July 5, 1994)

2002 Annual Groundwater Monitoring Report, Former Ball and Socket Manufacturing Company Facility, by Triton Environmental, Inc. (January 2003)

³ As measured in groundwater prior to entry to the groundwater-surface water/sediment interaction (e.g., hyporheic) zone.

2004 Annual Groundwater Monitoring Report, Former Ball and Socket Manufacturing Company Facility, by Advanced Environmental Interface, Inc. (January 2005)

Based on the TtNUS passive vapor diffusion sample data, concentrations of VOCs are entering Willow Brook. The nearest monitoring well to Willow Brook is MW-4R. Based on the 2004 Annual Groundwater Monitoring report, concentration of PCE detected in monitoring well MW-4R is above the CTDEP Surface Water Protection Criteria. However, the detected concentration was below 10 times the CTDEP Surface Water Protection Criteria. No other VOCs were detected in groundwater samples from MW-4R with concentrations above the CTDEP Surface Water Protection Criteria. Therefore, the discharge of the VOCs into Willow Brook are likely to be insignificant at this time.

6.	"currently acc	arge of "contaminated" groundwater into surface water be shown to be septable" (i.e., not cause impacts to surface water, sediments or eco-systems to be allowed to continue until a final remedy decision can be made and?
		If yes - continue after either: 1) identifying the Final Remedy decision incorporating these conditions, or other site-specific criteria (developed for the protection of the site's surface water, sediments, and eco-systems), and referencing supporting documentation demonstrating that these criteria are not exceeded by the discharging groundwater; OR 2) providing or referencing an interim-assessment, ⁵ appropriate to the potential for impact, that shows the discharge of groundwater contaminants into the surface water is (in the opinion of a trained specialists, including ecologist) adequately protective of receiving surface water, sediments, and eco-systems, until such time when a full assessment and final remedy decision can be made. Factors which should be considered in the interimassessment (where appropriate to help identify the impact associated with discharging groundwater) include: surface water body size, flow, use/classification/habitats and contaminant loading limits, other sources of surface water/sediment contamination, surface water and sediment sample results and comparisons to available and appropriate surface water and sediment "levels," as well as any other factors, such as effects on ecological receptors (e.g., via bio-assays/benthic surveys or site-specific ecological Risk Assessments), that the overseeing regulatory agency would deem appropriate for making the El determination.
		If no - (the discharge of "contaminated" groundwater can not be shown to be "currently acceptable") - skip to #8 and enter "NO" status code, after documenting the currently unacceptable impacts to the surface water body, sediments, and/or eco-systems.
		If unknown - skip to 8 and enter "IN" status code.

Rationale and Reference(s):

- ⁴ Note, because areas of inflowing groundwater can be critical habitats (e.g., nurseries or thermal refugia) for many species, appropriate specialist (e.g., ecologist) should be included in management decisions that could eliminate these areas by significantly altering or reversing groundwater flow pathways near surface water bodies.
- The understanding of the impacts of contaminated groundwater discharges into surface water bodies is a rapidly developing field and reviewers are encouraged to look to the latest guidance for the appropriate methods and scale of demonstration to be reasonably certain that discharges are not causing currently unacceptable impacts to the surface waters, sediments or eco-systems.
- 7. Will groundwater **monitoring** / measurement data (and surface water/sediment/ecological data, as necessary) be collected in the future to verify that contaminated groundwater has remained within the horizontal (or vertical, as necessary) dimensions of the "existing area of contaminated groundwater?"

<u>Y</u>	If yes - continue after pro	viding or citing docur	nentation for pl	anned activ	vities
	or future sampling/me well/measurement locat expectation (identified i migrating horizontally (o of groundwater contamin	ions which will be tes in #3) that groundwat or vertically, as necess	sted in the futur ter contamination	e to verify on will not	the be
	If no - enter "NO" statu	s code in #8.			
	If unknown - enter "IN"	status code in #8.			

Rationale and Reference(s):

References used for this determination include the reports listed below:

2002 Annual Groundwater Monitoring Report, Former Ball and Socket Manufacturing Company Facility, by Triton Environmental, Inc. (January 2003)

2004 Annual Groundwater Monitoring Report, Former Ball and Socket Manufacturing Company Facility, by Advanced Environmental Interface, Inc. (January 2005)

Dalton is required to continue the RCRA Post Closure Part B Groundwater Monitoring Program that was submitted to EPA in 1991 by Ball and Socket. The monitoring program is currently semiannual with groundwater samples collected in June and December. However, it is likely that additional groundwater information will be required in the future for one or more of the following reasons: complete the RFI; complete a CMS; and/or groundwater monitoring as part of a final remedy.

8. Check the appropriate RCRIS status codes for the Migration of Contaminated Groundwater Under Control EI (event code CA750), and obtain Supervisor (or appropriate Manager) signature and date on the EI determination below (attach appropriate supporting documentation as well as a map of the facility). YE YE - Yes, "Migration of Contaminated Groundwater Under Control" has been verified. Based on a review of the information contained in this EI determination, it has been determined that the "Migration of Contaminated Groundwater" is "Under Control" at the Ball and Socket Manufacturing Co. (former), EPA ID # CTD001167493, located at 493 West Main Street in Cheshire, CT. Specifically, this determination indicates that the migration of "contaminated" groundwater is under control, and that monitoring will be conducted to confirm that contaminated groundwater remains within the "existing area of contaminated groundwater". This determination will be re-evaluated when the Agency becomes aware of significant changes at the facility. NO - Unacceptable migration of contaminated groundwater is observed or expected. IN - More information is needed to make a determination. Date 9/22/05 Completed by (signature) Edgar Davis

(EPA Region or State) EPA Region I

References may be found in the site file located in the records center at 1 Congress Street.

Matthew Hoagland

(title) Environmental Engineer (RCRA Corrective Action Region I)

Section Chief RCRA Corrective Action (EPA Region I)

(name) Edgar Davis (phone #) 617-918-1379

(signature).

(print)

(e-mail) Davis.Edgar@epamail.epa.gov

Supervisor

Contact telephone and e-mail numbers

Table 1 Sediment Sample Analytical Results for Ball and Socket Manufacturing Co. (former)

Exceeding MADEP Threshold Effect Concentrations for Freshwater Sediment Samples Collected by TtNUS Team Personnel in March 2005

Sample Location	Substance	Sample Concentration (ppm)	MADEP TECs (ppm)			
SD-01	METALS					
	Copper	59.0 J	31.6			
	Lead	67.6	35.8			
SD-02	METALS					
	Cadmlum	1.5	0.99			
	Copper	243 J	31.6			
	Lead	109	35.8			
	Mercury	0.32	0.18			
	Nickel	33.6	22.7			
	Zinc	153	121			
SD-03	METALS					
	Cadmium	2.1	0.99			
	Copper	138 J	31.6			
	Lead	95.9	35.8			
	Mercury	0.21	0.18			
	Nickel	36.3	22.7			
	Zinc	207	121			
SD-DUP-01	METALS					
	Copper	194 J	31.6			
	Lead	96.7	35.8			
	Mercury	0.24	0.18			
	Nickel -	24.8	22.7			

Notes:

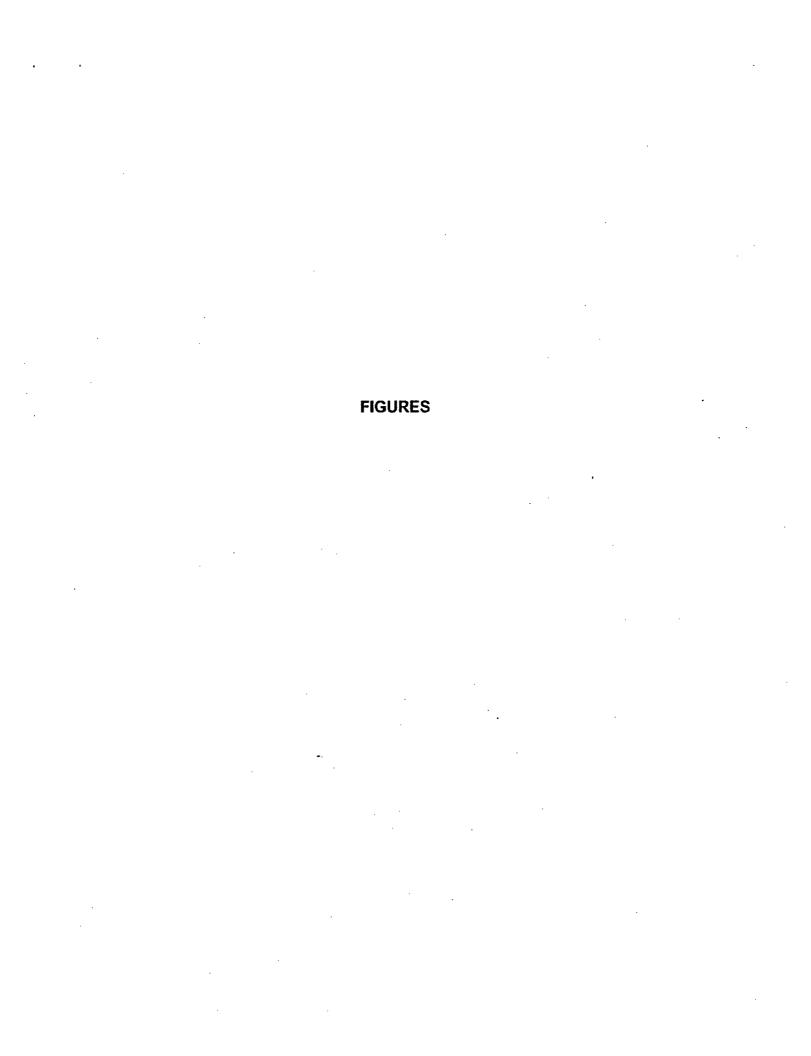
opm = Parts per million

MADEP = Massachusetts Department of Environmental Protection.

TEC = Threshold effect concentration are intended to identify contaminant concentrations below which harmful effects on sediment-dwelling benthic impact may begin, and where water column species and wildlife are at potential

risk.

J = The associated numerical value is an estimated quantity.


Table 2 Summary of VOC Analytical Results Residential Drinking Water Groundwater Samples Collected for Ball and Socket Manufacturing Co. by TtNUS Team Personnel in February 2005

Sample Location (Address)	Compound/Element	Sample Concentration
GW-DW-01	Methyl tert-butyl ether	0.20 J ppb
(150 Oak Avenue)	1,1-Dichloroethane	0.10 J ppb
	Trichloroethene	0.11 J ppb
	Tetrachloroethene	0.12 J ppb
GW-DW-02	1,1-Dichloroethane	0.11 J ppb
(146 Oak Avenue)	Trichloroethene	0.17 J ppb
	Tetrachloroethene	0.37 J ppb
GW-DW-03	Acetone	5.3 J ppb
(49 Hemlock Ridge Road)	Methyl tert-butyl ether	0.056 J ppb
	Cyclohexane	0.18 J ppb
	Ethylbenzene	0.084 J ppb
	Xylenes	0.33 J ppb
GW-DW-04 (54 Hemlock Ridge Road)	Methyl tert-butyl ether	0.12 J ppb
GW-DW-05 (66 Hemlock Ridge Road)	Methyl tert-butyl ether	0.61 ppb
GW-DW-06 (26 Hemlock Ridge Road)	Methyl tert-butyl ether	0.16 J ppb
GW-DW-07	Methyl tert-butyl ether	2.0 ppb
(65 Hemlock Ridge Road)	Toluene	0.14 J ppb
GW-DW-DUP-01 (184 Oak Avenue)	Methyl tert-butyl ether	0.16 J ppb
GW-DW-10	Methyl tert-butyl ether	0.096 J ppb
(138 Oak Avenue)	Trichloroethene	0.28 J ppb
	Tetrachloroethene	0.85 ppb

Notes:

Estimated value below contract required quantitation limit.

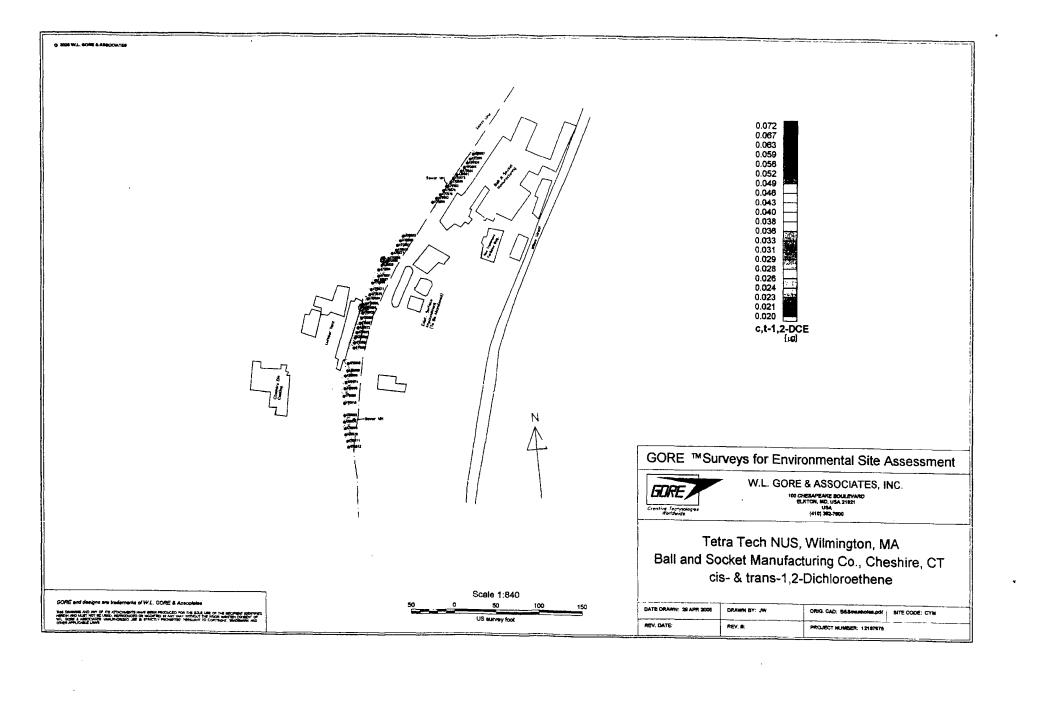
ppb = Parts per billion.

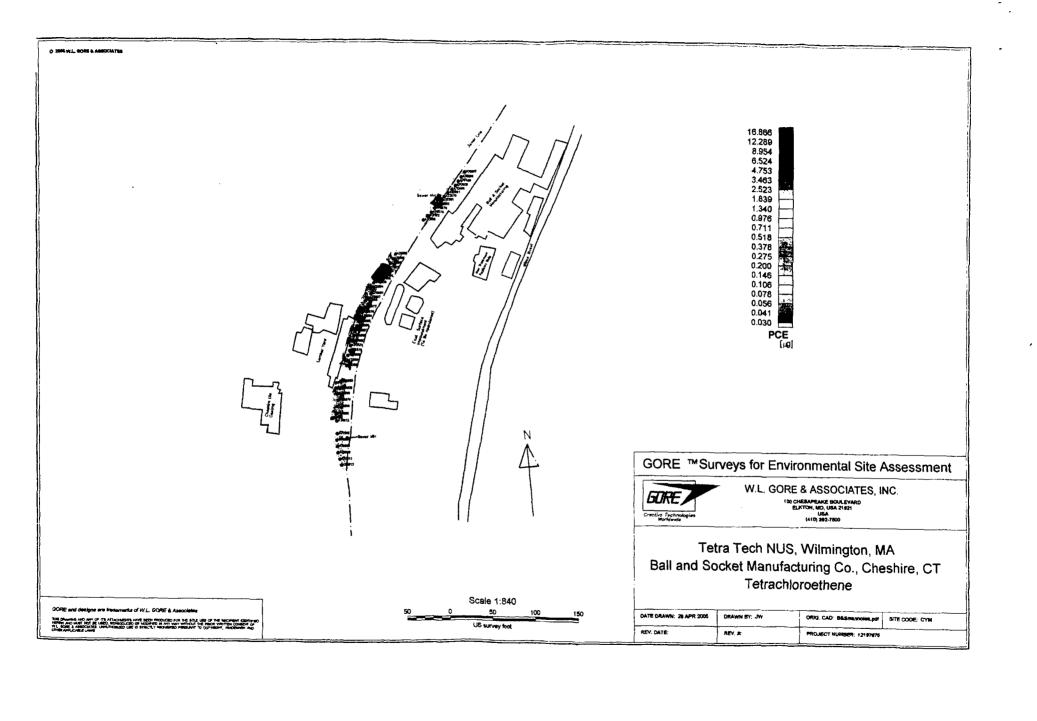
NOTES

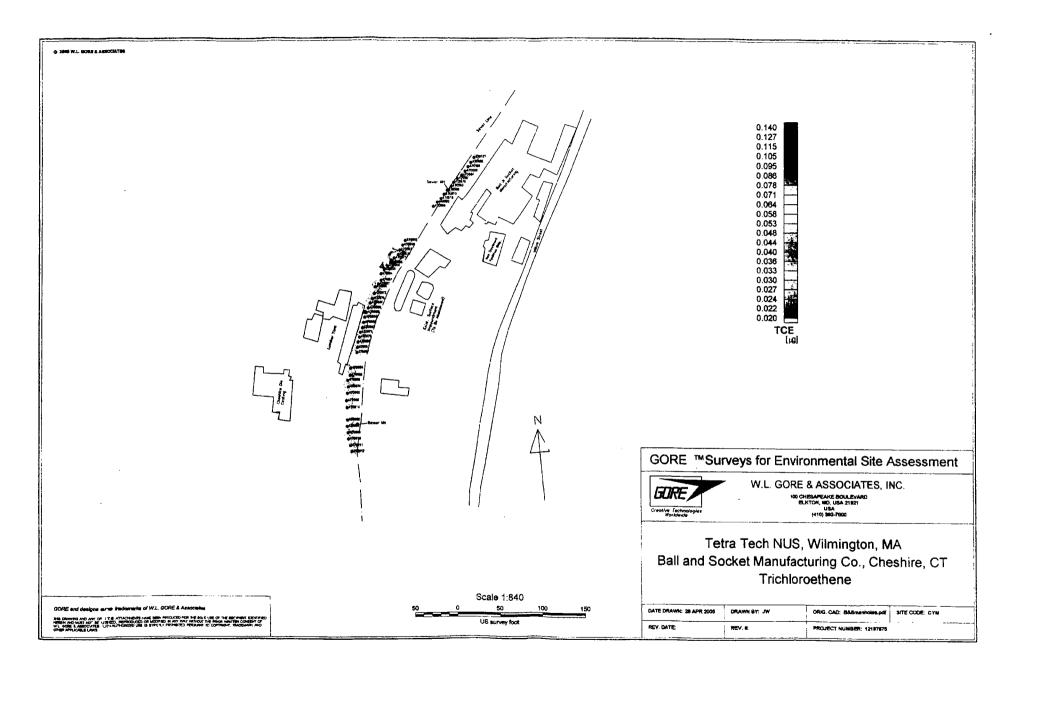
1. BASE MAP IS A PORTION OF THE FOLLOWING USGS 7.7' QUADRANGLES - MT. CARMEL, CT 1987 (PHOTO REMISED 1984) SOUTHINGTON, CT 1988 (PHOTO REVISED 1992).

·	SITE	LOCATIO	N	FIGURE 1
BALL AND	SOCKET MANUF	ACTURING	COMPANY (FORMER	
	CHES	HIRE, C	Γ	TETRA TECH NUS, INC.
DRAWN BY:	R.G. DEWSNAP	REV.:	0	
CHECKED BY:	J. PILLION	DATE:	JULY 19, 2005	55 Jonspin Road Wilmington, MA 01887
SCALE:	AS SHOWN	100 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	91\0300\FIGURE_1.DWG	(978)658-7899

TETRA TECH NUS, INC. 55 JONSPIN ROAD WILMINGTON, MA 01887 TETRA TECH NUS, INC. (TINUS) SAMPLE LOCATIONS
BALL AND SOCKET MANUFACTURING COMPANY (FORMER)
CHESHIRE, CONNECTICUT


SCALE As Shown


FILE GISVSITEASSESSMENT/BALLANDSOCKET/ BALLANDSOCKET APR


REV

DATE 7/1/05

FIGURE NUMBER FIGURE 2

					•		
		ATTACH	MENT A			-	
	·						
				•			
	·				•		
-							
			,				
		-					
	•						
				٠.			
·					·		
	•						
			·				
							٠

U.S. ENVIRONMENTAL PROTECTION AGENCY **REGION 1**

OFFICE OF ENVIRONMENTAL MEASUREMENT & EVALUATION NORTH CHELMSFORD, MASSACHUSETTS 01863-2431

IEMORANDUM

IATE:

April 5, 2005

UBJECT: Ball & Socket Mfg. Cheshire, CT - Volatile Organics Analysis of Passive Vapor

Diffusion and Soil Gas Samples

ROM:

Scott Clifford, Chemist

0:

Gerardo Millan-Ramos, HBS

HRU:

Dan Boudreau, Chemistry Laboratory Services Coordinator

PROJECT NUMBER:

05040003

DATE OF ANALYSIS:

03/30/05

ANALYTICAL PROCEDURE:

Vapor samples were analyzed using Region I's standard air screening method. Air Sample Analysis for Volatile Organic Compounds, (EIA-FLDGRAB4.WPD). Samples were analyzed on site using a Photovac 10A10 gas chromatograph equipped with a 4' 1/8 " SE-30 column and a photoionization detector, and a Shimadzu GC 14A gas chromatograph equipped with a 30 meter, 0.53mm DBPS-624 column, and electron capture detector. Concentrations of volatile organics were calculated using the external standard technique. Results are reported in parts per billion by volume (ppb/v).

Notes: Some passive vapor diffusion samples contained small amounts of water, however, they were analyzed in such a manner that the water did not affect the sample results.

File: K:\CHEMISTRY\REPORTS\FIELD\05040003fdvoaa.xls

Target Compounds and Approximate Reporting Limits

-	re, CT - Vapor Target Compounds ate Reporting Limits
Compound	Reporting Limit (ppb/v)
Trichloroethylene (TCE)	5
Tetrachloroethylene (C ₂ Cl ₄)	0.6
1,1-Dichloroethylene (1,1-DCEE)	9

Results: The results in tables are Tentatively Identified Compounds and Approximate Concentrations

ND () = Nothing detected above reporting limit. Reporting limit in parenthesis.

Ball & Socket Mfg. Cheshire, CT - Soil Gas and Passive Vapor						
Diffusion Sample Results (ppb/v)						
	3/30/2005					
Sample #	TCE	C ₂ Cl ₄	1,1-DCEE			
ASG-18 (Soil Gas)	ND(6)	172	ND(9)			
ASG-42 (Soil Gas)	ND(6)	0.7	ND(9)			
ASG-43 (Soil Gas)	ND(6)	3.6	ND(9)			
Passive Vapor Diffusion Samples						
VS-18	47	263	23			
VS-10	170	2970	388			
VS-15	9	1080	ND(9)			
VS-09	216	860	234			
VS-TB-01	ND(1)	ND(0.6)	ND(9)			
VS-12	110	1040	61			
VS-08	15	4	37			
VS-11 (1ml water in sample)	306	1256	712			
VS-DUP-01 (1ml water in sample)	308	1242	750			
VS-16 (2ml water in sample)	ND(6)	56	18			
VS-19	ND(1).	ND(0.6)	ND(9)			
VS-20	50	1070	14			
VS-17 (4ml water in sample)	28	583	22			
VS-14	40	1070	19			
VS-13 (1ml water in sample)	86	2300	94			
VS-07 (1ml water in sample)	ND(1)	ND(0.6)	ND(9)			
VS-02 (5ml water in sample)	7	194	ND(9)			
VS-05	ND(1)	ND(0.6)	ND(9)			
VS-04 (5ml water in sample)	11	2	12			
VS-03	ND(1)	ND(0.6)	ND(9)			
VS-06 (4ml water in sample)	ND(1)	ND(0.6)	ND(9)			
VS-01	ND(1)	ND(0.6)	ND(9)			
			·			

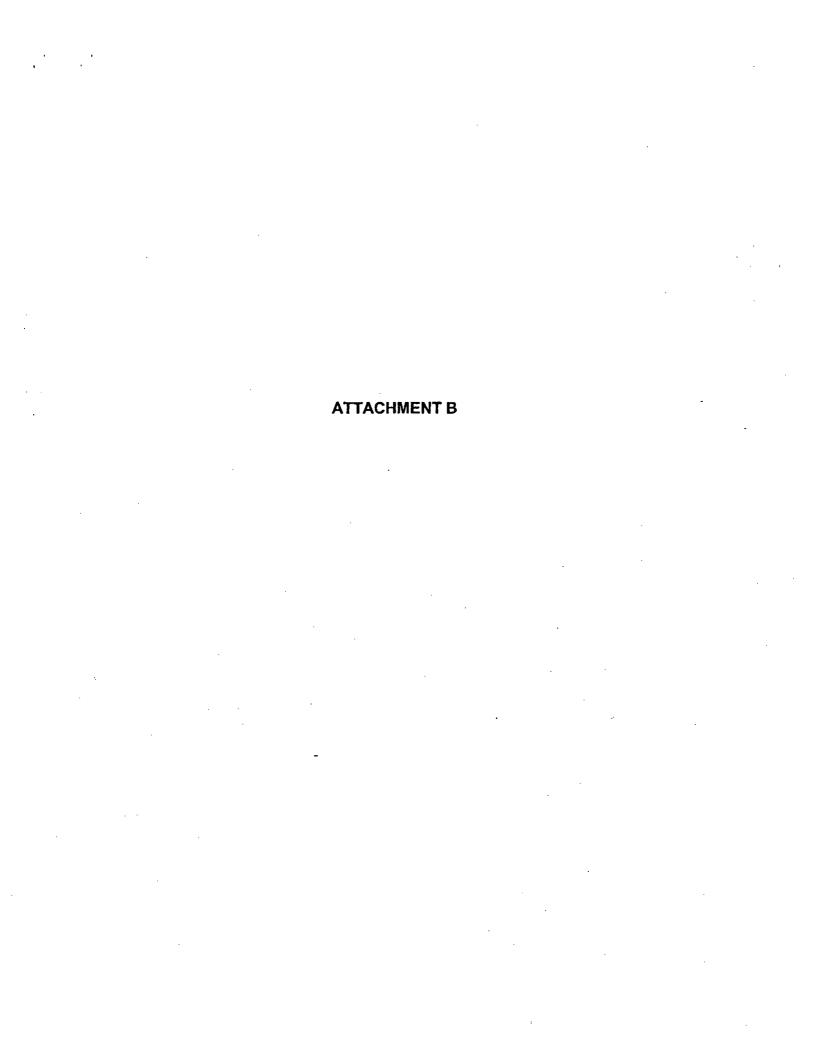


Table 4

Comparison of Ground Water Sample Analyte Concentrations to RSR Numerical Criteria and Drinking Water Standards Former Ball & Socket Manufacturing Company Facility, Cheshire, Connecticut

June 2004

Analyte	Ground Water Protection Criteria for GA and GAA Areas (µg/L)	Surface Water Protection Criteria (µg/L)	Ground	n Criterla for Water ⁽¹⁾ pb)	Drinking Water Standards (µg/L)	Ground Water Sample Concentrations (ppb)				
			Residential	Industrial/ Commercial		B-1	B-2	B-4	B-5	MW-4R
USEPA Method 8021B Volatile Organic Compounds (VOCs)	1									
cis-1,2-Dichloroethene	70	NC	830	11,000	70 ⁽²⁾	9.9	ND<1.0	6.5	11	ND<1.0
1,1-Dichloroethene	7 _	96	190	920	7 ⁽²⁾	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
Methylene Chloride (dichloromethane)	5	48,000	160	2,200	5 ⁽²⁾	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<5.0
Tetrachloroethene	5	88	340	810	5 ⁽²⁾	13	ND<1.0	2.8	8.0	100
trans-1,2-Dichloroethene	100	NC	1,000	13,000	100(2)	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
1,1,1-Trichloroethane	200	62,000	6,500	16,000	200 ⁽²⁾	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
Trichloroethene	5	2,340	27	67	5 ⁽²⁾	ND<1.0	ND<1.0	2.1	3.5	1.4
Vinyl Chloride	2	15,750	1.6	52	2 ⁽²⁾	3.4	ND<1.6	ND<1.6	3.2	ND<1.6
Dissolved Metals										
Copper	1,300	48	NC	NC	1.000 ⁽³⁾	ND<40	ND<40	ND<40	ND<40	ND<40
Iron	NC	NC	NC	NC	300(3)	ND<100	ND<100	ND<100	ND<100	ND<100
Fead	15	13	NC	NC	15 ^[4]	ND<13	ND<13	ND<13	ND<13	ND<13
Nickel	100	880	NC	NC !	100 ⁽⁶⁾	ND<50	ND<50,	ND<50	ND<50	ND<50
Zinc	5,000	123	NC	NC	5,000 ⁽³⁾	10	18	43	24	19
Total Cyanide	200	52	NC	NC	200 ^(2,6)	ND<50	ND<50	ND<50	ND<50	ND<50

Notes:

- ppb = Parts per billion.
- μg/L = Micrograms per liter (comparable to ppb).
- NC = No criterion established.
- ND = Not detected above laboratory minimum detection limit.
- NT = Not tested.
- (1) = The criteria shown below are taken from DEP's proposed criteria
- dated March 2003, which DEP recommends for current use.
- (2) = U. S. Environmental Protection Agency (EPA) primary drinking water maximum contaminant level (MCL).
- 40 CFR Section 141,61, July 1, 2003.
- (3) = U. S. EPA secondary MCL, 40 CFR Section 143.3, July 1, 2003.
- (4) = U. S. EPA action level, 40 CFR Section 141.80, July 1, 2003.
- (5) = State of Connecticut Department of Public Health (DPH) MCL, July 13, 1998.
- (6) = Criterion is for free cyanide.
 - Concentration exceeds associated criterion.

Table 4

Comparison of Ground Water Sample Analyte Concentrations to RSR Numerical Criteria and Drinking Water Standards Former Ball & Socket Manufacturing Company Facility, Cheshire, Connecticut

June 2004

				1118 2004		<u> </u>					
Analyte	Ground Water Protection Criteria for GA and GAA Areas (µg/L)	Surface Water Protection Criteria (µg/L)	Volatilization Criteria for Ground Water ⁽¹⁾ (ppb)		Drinking Water Standards (µg/L)						
			Residential	Industrial/ Commercial		GZ-1	GZ-1D	GZ-2	GZ-2D	Equipment Blank	Trip Blank
USEPA Method 8021B Volatile Organic											
Compounds (VOCs) cis-1,2-Dichloroethene	70	NC	830	11,000	70 ⁽²⁾	ND<1.0	440	3.3	14	ND<1.0	ND<1.0
1.1-Dichloroethene	7	96	190	920	7 ^{{2} }	ND<1.0	1.5	ND<1.0	ND<1.0	ND<1.0	ND<1.0
Methylene Chloride (dichloromethane)	5	48,000	160	2,200	5 ⁽²⁾	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<5.0
Tetrachloroethene	5	88	340	810	5 ⁽²⁾	5,9	120	16	1.2	ND<1.0	ND<1.0
trans-1,2-Dichloroethene	100	NC	1,000	13,000	100 ⁽²⁾	ND<1.0	3.7	ND<1.0	ND<1.0	ND<1.0	ND<1.0
1,1,1-Trichloroethane	200	62,000	6,500	16,000	200 ⁽²⁾	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
Trichlorgethene	5	2,340	27	67	5 ⁽²⁾	ND<1.0	10	1.2	ND<1.0	ND<1.0	ND<1.0
Vinyl Chloride	2.	15,750	1.6	52	2 ⁽²⁾	ND<1.6	ND<1.6	ND<1.6	5.8	ND<1.6	ND<1.6
Dissolved Metals									<u></u>		ļ
Соррег	1,300	48	NC	NC	1,000 ⁽³⁾	NT	NT	NT	NT	ND<40	NT
Iron	NC	NC	NC	NC	300 ⁽³⁾	NT	NT	NT	NT	ND<100	NT
Lead	15	13	NC	NC	15'7'	NI.	NI	NI	NI I	NUNIS	AIT
Nickel	100 .	880	NC	NC	100 ⁽⁵⁾	NT .	NT	NT	NT	ND<50	NT NT
Zinc	5,000	123	NC	NC	5,000 ⁽³⁾	NT ·	NT	NT	NT	16	I NI
Total Cyanide	200	52	NC	NC	200 ^(2,6)	ND<50	ND<50	ND<50	ND<50	ND<50	NT

Notes:

- ppb = Parts per billion.
- ug/L = Micrograms per liter (comparable to ppb).
- NC = No criterion established.
- ND = Not detected above laboratory minimum detection fimit.
- NT = Not lested
- (1) = The criteria shown below are taken from DEP's proposed criteria
 - dated March 2003, which DEP recommends for current use.
- (2) = U. S. Environmental Protection Agency (EPA) primary drinking water maximum contaminant level (MCL).
- 40 CFR Section 141.61, July 1, 2003. (3) = U. S. EPA secondary MCL, 40 CFR Section 143.3, July 1, 2003.
- (4) = U. S. EPA action level, 40 CFR Section 141.80, July 1, 2003.
- (5) = State of Connecticut Department of Public Health (DPH) MCL, July 13, 1998.
- (6) = Criterion is for free cyanide.
 - = Concentration exceeds associated criterion.

ADVANCED ENVIRONMENTAL INTERFACE, INC.

Table 5

Comparison of Ground Water Sample Analyte Concentrations to RSR Numerical Criteria and Drinking Water Standards Former Ball & Socket Manufacturing Company Facility, Cheshire, Connecticut December 2004

Analyte	Ground Water Protection Criteria for GA and GAA Areas (µg/L)	Surface Water Protection Criteria (µg/L)	Volatilization Criteria for Ground Water ⁽¹⁾ (ppb)		Drinking Water Standards (µg/L)	Ground Water Sample Concentrations (ppb)					
			Industrial								
			Residential	Commercial		B-1	B-2	B-4	B-5_	MW-4R	GZ-1
Sample Collection Date						12/15/04	12/15/04	12/15/04	12/15/04	12/15/04	12/15/04
USEPA Method 8021B Volatile Organic	 										
Compounds (VOCs)											
ds-1,2-Dichloroethene	70	NC	830	11,000	70 ⁽²⁾	9.3	ND<1.0	8.6	9.9	ND<1.0	ND<1.0
Methylene Chloride (dichloromethane)	5	48,000	160	2,200	5 ⁽²⁾	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<5.0
Tetrachioroethene	5	88	340	810	5(2)	4.4	ND<1.0	3.7	9.5	97	6.4
trans-1.2-Dichloroethene	100 -	NC	-1,000	13,000	100 ⁽²⁾	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
1.1.1-Trichloroethane	200	62,000	6,500	16,000	200 ⁽²⁾	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
Trichloroethene	5	2,340	27	67	· 5 ⁽²⁾	ND<1.0	ND<1.0	2.0	2.5	1.7	ND<1.0
Vinyl Chloride	2	15,750	1.6	52	2 ⁽²⁾	7.5	ND<1.6	ND<1.6	2.9	ND<1.6	ND<1.6
Dissolved Metals											
Chromium (total)	50	NC	NC	NC	100 ⁽²⁾	ND<50	ND<50	ND<50	ND<50	ND<50	NT
Copper	1,300	48	NC	NC	1,000(3)	ND<40	ND<40	ND<40	ND<40	ND<40	NT
Iron	NC	NC	NC	NC	300 ⁽³⁾	ND<100	ND<100	ND<100	130	ND<100	NT
Lead	15	13	NC	NC	15(4)	ND<13	ND<13	ND<13	ND<13	ND<13	NT
Nickel	. 100	880	NC	NC !	100 ⁽⁵⁾	ND<50	ND<50	ND<50	ND<50	ND<50	NT
Zinc	5,000	123	NC .	NC	5,000 ⁽³⁾	15	78	32	23	ND<10	NT
Total Cyanide	200	52	NC	NC	200(2,6)	.ND<50	ND<50	ND<50	ND<50	ND<50	ND<50

Notes:

Paris per billion. σqq

Micrograms per liter (comparable to ppb). μg/L

NC No criterion established.

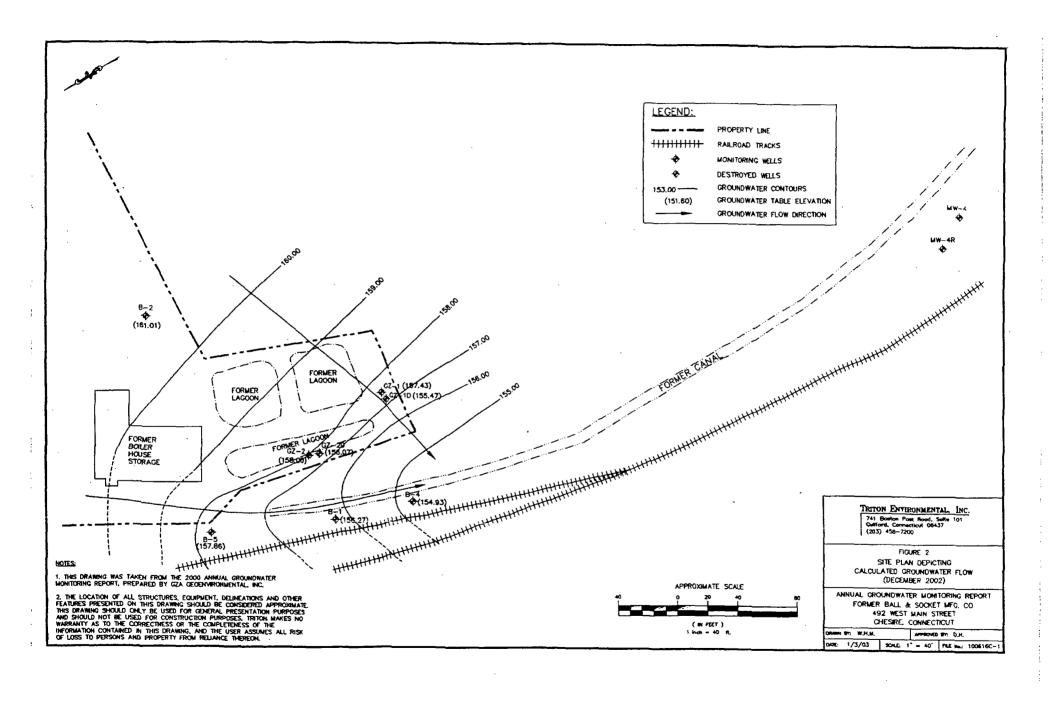
ND Not detected above laboratory minimum detection limit.

NT

- The criteria shown below are taken from DEP's proposed criteria dated March 2003, which DEP recommends for current use. (1)
- U. S. Environmental Protection Agency (EPA) primary drinking water maximum contaminant level (MCL). (2)
- (3) U. S. EPA secondary MCL
 - U. S. EPA action level.
- State of Connecticut Department of Public Health (DPH) MCL, July 13, 1998.
- Criterion is for free cyanide.
 - Concentration exceeds associated criterion.

Table 5

Comparison of Ground Water Sample Analyte Concentrations to RSR Numerical Criteria and Drinking Water Standards Former Ball & Socket Manufacturing Company Facility, Cheshire, Connecticut


December 2004

Analyte	Ground Water Protection Criteria for GA and GAA Areas (µg/L)	Surface Water Protection Criteria (µg/L)	Ground	Volatilization Criteria for Ground Water ⁽¹⁾ (ppb)		Gro	ppb)			
Aparyto			Residential	Industrial/ Residential Commercial		GZ-1D	GZ-2	GZ-2D	Equipment Blank	Trip Blank 12/15/04
Sample Collection Date						12/15/04	12/15/04	12/15/04	12/15/04	12/15/04
USEPA Method 8021B Volatile Organic Compounds (VOCs)										
cis-1.2-Dichloroethene	70	NC	830	11,000	70 ⁽²⁾	46	2.1	7.4	ND<1.0	ND<1.0
Methylene Chloride (dichloromethane)	5	48,000	160	2,200	5 ⁽²⁾	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<5.0
Tetrachloroethene	ر 5	88	340	810	5(2)	190	15	1.4	ND<1.0	ND<1.0
trans-1,2-Dichloroethene	100	NC	1,000	13,000	100(2)	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
1,1,1-Trichloroethane	200	62,000	6,500	16,000	200(2)	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
Trichloroethene	5	2,340	27	67	5(2)	4.1	ND<1.0	ND<1.0		ND<1.6
Vinyl Chloride	2	15,750	1.6	52	2(2)	2.9	ND<1.6	ND<1.6	ND<1.6	ND 1.0
Dissolved Metals					(2)			\	110 -50	NT
Chromium (total)	50	NC	NC	NC	100 ⁽²⁾	NT	NT	NT	ND<50	NT
Copper	1,300	48	NC	NC	1,000(3)	NT	NT	NT	ND<40	NT
Iron	NC	NC	NC	NC	300 ⁽³⁾	NT	NT	NT	ND<100 ND<13	NT
Lead	15	13	NC	NC	15(4)	NT	NT	NT	ND<13 ND<50	NT
Nickel	100	880	NC	NC .	100 ⁽⁵⁾	NT	NT	NT	12	NT
Zinc	5,000	123	NC	NC	5,000 ⁽³⁾	NT	NT	NT	12	141
Total Cyanide	200	52	NC	NC	200(2.6)	ND<50	ND<50	ND<50	ND<50	NI

Notes:

- Paris per billion. ppb
- Micrograms per liter (comparable to ppb). ug/L
- No criterion established. NC
- Not detected above laboratory minimum detection limit. ND
- NT
- The criteria shown below are taken from DEP's proposed criteria dated March 2003, which DEP recommends for current use.
 - U. S. Environmental Protection Agency (EPA) primary drinking water maximum contaminant level (MCL).
- = U. S. EPA secondary MCL.
- = U. S. EPA action level.
- State of Connecticut Department of Public Health (DPH) MCL, July 13, 1998.
 - Criterion is for free cyanide.
 - Concentration exceeds associated criterion.

ADVANCED ENVIRONMENTAL INTERFACE, INC. AEI-04T-001 Table 5 Page 2 of 2

TABLE 5

Volatile Organic Compounds Summary (Halogenated Only) - Groundwater Samples

Former Ball & Socket Manufacturing Company - Cheshire, Connecticut RCRA Groundwater Monitoring - 2000 Through 2002

Monitoring Well B-1

A COMMON AND A COM			ichnio en se	Carean "		To Mary			Walling.	BE OUNT			
		COMP	SWRE		McLine:	With		ration.	David.	L. CONT	i vilagi i		140-101
			MI Topicial			ong interfa							
Vinyl Chloride	ug/L	2	15,750	2	2	2	ND	1.9	ND			ND	12 TO 18 TO
Methylone Chloride	ug/L	5	48,000	50,000	50,000	5	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene	ug/L	70	NE	NE	NE	70	3	7	6.8	7.5	7	8	15
Trichloroethene	ug/L	5	2,340	219	540	5	ND	1.2	ND	ND	ND	1.5	1.3
Tetrachloroethene	ug/L	5	88	1,500	3,820	5		新 机机器		4.8	F 75 K	3.9	3.9
						anis Comp	outrus (Carlo						
Copper	mg/L	1.3	0.048	NE	NE	1.000	ND	ND	ND	ND	ND	ND	ND
Nickel	mg/L	0.100	0.880	NE	NE	NE	ND	ND	ND	ND	ND	ND	ND
Zinc	mg/L	5	0.1230	NE	NE	. 5	0.03	ND	0.01	ND	ND	ND	ND
Iron	mg/L	NE	NE	NE	NE	0.30	带级阳极			(1000)		ND	ND
Cyanide	mg/L	0.2	0.052	NE.	NE	0.20	0.01	ND	0.01	ND	ND	ND	ND

Notes:

Bolded and Shaded Values Indicate an Exceedance of Applicable Remediation Standard Regulation Criteria.

ug/L = micrograms per liter.

mg/L = miligrams per liter.

SWPC = Surface Water Protection Criteria.

GWPC = Ground Water Protection Criteria

MCL = Maximun Consentration Limit.

VC = Volatilization Criteria.

I/C = Industrial/Commercial

Res. = Residential.

NE = Not Established by the CTDEP.

ND = Parameter Not Detected. Detection Limits vary, refer to attached lab results.

⁼ Remediation Standard Regulations (January 1996 and April 1999).

Volatile Organic Compounds Summary (Haiogenated Only) - Groundwater Samples

Former Ball & Socket Manufacturing Company - Cheshire, Connecticut RCRA Groundwater Monitoring - 1999 Through 2002

Monitoring Well B-2

				Eldlestin		AVEINEN'S			Sellana.	(455,013874))	ilo Collesiji		
		10,000	SWEE	Works.	Vo.W	Welf	10000		TV min	1 (15 (2001) 1 (15 (2001)	12070	लंग क	£51.0%
	and institu				N. VOLTINE	DEATHER TO							
Vinyl Chloride	ug/L	2	15,750	2 .	2	2	ND	ND	ND	ND	ND	ND	ND
Methylene Chloride	ug/L	5	48,000	50,000	50,000	5	ND	.ND	ND	ND	ND .	ND	ND
cis-1,2-Dichloroethene	ug/L	70	NE	NE	NE	70	ND	ND	0.4	ND .	ND	ND	ND
Trichloroethene	ug/L	5	2,340	219	540	5	ND	ND	ND	ND	ND	ND	ND
Tetrachlomethene	ug/L	5	88	1,500	3,820	. 5	ND	ND	0.4	ND		ND	ND
					es a allione	onle Comp	يرجين الأسا			PER PROPERTY.			
Copper	mg/L	1.3	0.048	NE	NE	1.000	ND	· ND	ND	ND	ND	ND	ND
Nickel	mg/L	0.100	0.880	NE	NE	NE	ND	ND	ND	ND	ND	ND	ND
Zinc	mg/L	5	0.1230	NE	NE	5	0.013	ND	0.054	ND	0.4	0.02	0.013
lron	mg/L	NE	NE	NE	NE	0.30	動物的數		0.868		ND	ND	ND
Cyanide	mg/L	0.2	0.052	NE	NE	0.20	ND	ND	ND	ND	ND .	ND	ND

Notes:

1-Remediation Standard Regulations (January 1996 and April 1999).

Bolded and Shaded Values Indicate an Exceedance of Applicable Remediation Standard Regulation Criteria.

ug/L = micrograms per liter.

mg/L = miligrams per liter.

SWPC = Surface Water Protection Criteria.

GWPC = Ground Water Protection Criteria

MCL = Maximun Consentration Limit.

VC = Volatilization Criteria.

I/C = Industrial/Commercial

Res. = Residential.

NE = Not Established by the CTDEP.

Volatile Organic Compounds Summary (Halogenated Only) - Groundwater Samples

Former Ball & Socket Manufacturing Company - Cheshire, Connecticut RCRA Groundwater Monitoring - 1999 Through 2002

Monitoring Well B-4

garaga (garaga)			arampa);	dataat).		131005			V meste,		is contently		
		NEW CE	Style 1		Tychica.	Pove(D)		Fin Marie	15/2/11	2075/16		11 11/V VII) T	17/19/02
					you we	Offin Mell	initight the second		र पुरस्य सम्बद्धाः स्टब्स्				
Vinyl Chloride	ug/L	2	15,750	2	2	2		ИD	0.9			ND	Marking at
Methylene Chloride	ug/L	5	48,000	50,000	50,000	5	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene	ug/L	70	NE	NE	NE	70	7.5	2.2	5.9	5.8	5.3	8.9	11
Trichlomethene	ug/L	5	2,340	219	540	. 5	3.7	1.1	1.8	1.6	2.6	3,1	3,1
Tetrachloroethene	ug/L	5	88	1,500	3,820	5	网络山 龙	4,1	4.1	2.9	4.7	3.4	3.1
						and some	OUT THE SECOND						AND ROOM
Copper	mg/L	1.3	0.048	NE ·	NE	1.000	0.045		ND	ND	ND	ND	ND
Nickel	mg/L	0.100	0.880	NE	NE	NE	0.06			0.06			0.08
Zinc	mg/L	5	0.1230	NE	NE	5	0.071		0.026	0.031	0.05	0.07	0.10
lron	mg/L	NE	· NE	NE	NE	0,30	ND	0.056	0.186	ND	ND	ND	ND
Cyanide	mg/L	0.2	0.052	NE	NE	0.20	ND	10.0	ND	ND	ND	ND	ND

Notes:

= Remediation Standard Regulations (January 1996 and April 1999).

Bolded and Shaded Values Indicate an Exceedance of Applicable Remediation Standard Regulation Criteria.

ug/L = micrograms per liter.

mg/L = miligrams per liter.

SWPC = Surface Water Protection Criteria.

GWPC = Ground Water Protection Criteria

MCL - Maximun Consentration Limit.

VC = Volatilization Criteria.

I/C = Industrial/Commercial

Res. = Residential.

NE = Not Established by the CTDEP.

Volatile Organic Compounds Summary (Halogenated Only) - Groundwater Samples

Former Ball & Socket Manufacturing Company - Cheshire, Connecticut RCRA Groundwater Monitoring - 1999 Through 2002

Monitoring Well B-5

in a second seco	101112		checker.			is in the			Valleto / r	ne obslikati	ietenikani	14 (2.36) 2 (4.31)	
		K(GM/µc)	PANGE !	WEINE	[wreit	THE PROPERTY OF		129 killi	i is E/ite	T. Frant	15 to 1000	1000
					關於可能價		miorous #2						
Vinyl Chloride	ug/L	2	15,750	2	2	2		ND	1.8	ND		ND	ND
Methylene Chloride	ug/L	5	48,000	50,000	50,000	5	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene	ug/L	70	NE	NE	NE	70	6.4	3	8.6	5.9	8.5		15
Trichloroethene	ug/L	5	2,340	219	540	5	3.2	1.2	2.2	3.7	1.5	3.0	3,2
Tetrachloroethene	ug/L	5	88	1,500	3,820	5			4,4		2.4		4.7
					2 4 100	min Chini							
Copper	ing/L	1.3	0.048	NE	NE	1.000	ND	ND	′ ND	ND	ND	ND	ND
Nickel	mg/L	0.100	0.880	NE	NE	NE	ND	ND	ND	ND	ND	ND	ND
Zinc	mg/L	5	0.1230	NE	NE	5	0.013	0.022	ND	ND	0.03	0.018	0.017
Iron	mg/L	NE	NE	NE	NE	0.30	100 18 18 18			0.24	ND	ND	ND
Cyanide	mg/L	0.2	0.052	NE	NE	0.20	ND	ND	ND	ND	ND	ND	ND

Notes:

Bolded and Shaded Values Indicate an Exceedance of Applicable Remediation Standard Regulation Criteria.

ug/L = micrograms per liter.

mg/L = miligrams per liter.

SWPC = Surface Water Protection Criteria.

GWPC = Ground Water Protection Criteria

MCL = Maximun Consentration Limit.

VC = Volatilization Criteria.

I/C = Industrial/Commercial

Res. = Residential.

NE = Not Established by the CTDEP.

Remediation Standard Regulations (January 1996 and April 1999).

· Volatile Organic Compounds Summary (Halogenated Only) - Groundwater Samples

Former Ball & Socket Manufacturing Company - Cheshire, Connecticut RCRA Groundwater Monitoring - 1999 Through 2002

Monitoring Well GZ-1

	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	The second secon	Marie and the second										
				almana"					Mole for th	neo(Smir	Economic		
Commune										<u> </u>			
			A MARKET	y VOJKISII	EVIDOR	MATERIAL							
					建 加斯市								
Vinyl Chloride	ug/L	2.	15,750	2	2	2	ND ·	ND	ND	ND .	ND	ND	ND
Methylene Chloride	ug/L	5	48,000	50,000	50,000	5	ND	ND	ND		ND	ND	ND
cis-1,2-Dichtoroethene	ug/L	70	NE	NE	NE	70	ND	ND	1.8	ND	ND	ND	ND
Trichloroethene	ug/L	5	2,340	219	540	5	ND	ND	0.8	ND	ND	ND	ND
Tetrachloroethene	ug/L	5	88	1,500	3,820	5	THE STATE OF THE S	4.9		3.8	3.7	## SAFE 0	STATES

Notes:

= Remediation Standard Regulations (January 1996 and April 1999).

Bolded and Shaded Values Indicate an Exceedance of Applicable Remediation Standard Regulation Criteria.

ug/L = micrograms per liter (ug/L).

SWPC = Surface Water Protection Criteria.

GWPC = Ground Water Protection Criteria

MCL = Maximun Consentration Limit.

VC = Volatilization Criteria.

I/C = Industrial/Commercial

Res. = Residential.

NE = Not Established by the CTDEP.

Volatile Organic Compounds Summary (Halogenated Only) - Groundwater Samples

Former Ball & Socket Manufacturing Company - Cheshire, Connecticut RCRA Groundwater Monitoring - 1999 Through 2002

Monitoring Well GZ-1D

			. Verinas ji let	Gritta (1900)		The print			MPI (IDWA)	ve di Sanji	ie Colligeito		
e tripioniee		(CAN ME	r with	ly what is	NG UK			\$ 64,000T	[jestino	Li siye wil	Trainal i	64100	
Vinyl Chloride	ug/L	2	15,750	2	2	2	ND	ND		ND		ND	PR#55184214
Methylene Chloride	ug/L	5	48,000	50,000	50,000	5	ND	ND	ND		ND	ND	ND
cis-1,2-Dichloroethene	ug/L	70	NE	NE	NE	70	20		and the same of		(121V)		A STATE OF THE STA
Trichloroethene	ug/L	5	2,340	219	540	5	ND			ND			
Tetrachloroethene	ug/L	, 5	8-8	1,500	3,820	5	ND					7.0	a all the second

Notes:

= Remediation Standard Regulations (January 1996 and April 1999).

Bolded and Shaded Values Indicate an Exceedance of Applicable Remediation Standard Regulation Criteria.

ug/L = micrograms per liter.

SWPC = Surface Water Protection Criteria.

GWPC = Ground Water Protection Criteria

MCL = Maximun Consentration Limit.

VC - Volatilization Criteria.

I/C = Industrial/Commercial

Res. = Residential.

NE = Not Established by the CTDEP.

Volatile Organic Compounds Summary (Halogenated Only) - Groundwater Samples

Former Ball & Socket Manufacturing Company - Cheshire, Connecticut RCRA Groundwater Monitoring - 1999 Through 2002

Monitoring Well GZ-2

	and the second		S. C. Prince	et wint					Mill Libyi	meanstrom	lacijinak		
Clangiounii Changiouni	Athiii Taran	i ekwinci	JWHU	Yes Block	vkiralize"	TWICE:	F EART D	TO EVIDOR TO	. to claim			FE ADO	SANGING.
Vinyl Chloride	ug/L	2.	15,750	2	2	2	ND	ND	0.9	ND	ND	ND	ND
Methylene Chloride	ug/L	5	48,000	50,000	50,000	5	ND	ND	ND		ND	ND	ND
cis-1,2-Dichloroethene	ug/L	70	NE	NE	NE	70	1.6	2.8	3.1	1.3	1.5	1.3	ND
Trichloroethene	ug/L	5	2,340	219	540	5	1.4	0.7	0.8	ND	ND	ND	ND
Tetrachloroethene	ug/L	5	88	1,500	3,820	5		30000	3.2 ·		2.2	ESCALA SERVICE	

Notes:

Example 2015 Remediation Standard Regulations (January 1996 and April 1999).

Bolded and Shaded Values Indicate an Exceedance of Applicable Remediation Standard Regulation Criteria.

ug/L = micrograms per liter.

SWPC = Surface Water Protection Criteria.

GWPC = Ground Water Protection Criteria

MCL = Maximun Consentration Limit.

VC = Volatilization Criteria.

I/C= Industrial/Commercial

Res. = Residential.

NE = Not Established by the CTDEP.

Volatile Organic Compounds Summary (Halogenated Only) - Groundwater Samples

Former Ball & Socket Manufacturing Company - Cheshire, Connecticut RCRA Groundwater Monitoring - 1999 Through 2002

Monitoring Well GZ-2D

FERRONS TO STATE	District Co.			Ostalia Ostalia					Walling and		n comand		
lit a d'himadeal	1.16(3)	To Partite 1	(s)(xys)(r ve ma	Vi c ilie	NAME OF THE PARTY	16E 1020			(<u>CZ4</u> (1)) ((M.: MBL	3077433	1 35 100	i i i i i i i i i i i i i i i i i i i
Vinyl Chloride	ug/L	2	15,750	2	2	2	0.42				200	71.	
Methylene Chloride	ug/L	5	48,000	50,000	50,000	5	ND	ND	ND	ND	ND	ND	. ND
cis-1,2-Dichloroethene	ug/L	70	NE	NE	NE	70	1.3	10	5.6	15	5.1	11	ND
Trichloroethene	ug/L	5	2,340	219	540	5	0.58	1	0.4	ND	ND	ND	ND
Tetrachloroethene	ug/Ļ	5	88	1,500	3,820	5	3.2	2.2	0.5	1.1	ND	1.2	1.2

Notes:

Example 1996 and April 1999).

Bolded and Shaded Values Indicate an Exceedance of Applicable Remediation Standard Regulation Criteria.

ug/L = micrograms per liter.

SWPC = Surface Water Protection Criteria.

GWPC = Ground Water Protection Criteria

MCL = Maximun Consentration Limit.

VC - Volatilization Criteria.

I/C = Industrial/Commercial

Res. - Residential.

NE = Not Established by the CTDEP.

Volatile Organic Compounds Summary (Halogenated Only) - Groundwater Samples

Former Ball & Socket Manufacturing Company - Cheshire, Connecticut RCRA Groundwater Monitoring - 1999 Through 2002

Monitoring Well MW-4

			Transfer and	ALCOVE !					Welking	littiji senij	ilvebile illi		
Cipromonial	Luste	CAMPE.	Wind.	P.CHULL		N.C.I.T.	V (1/2)			1 3/13/01 T		((7)). ((7)).	
					S VOINT IS	diginile es	regitus)ju						
Vinyl Chloride	. ug/L	2	15,750	2	2	2	ND.	ND	ND	ND	ND	ND	ND
Methylene Chloride	ug/L	5	48,000	50,000	50,000	5	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene	ug/L	70	NE	NE	NE ·	70	ND	ND	ND	ND	ND	1.2	ND
Trichloroethene	ug/L	5	2,340	. 219	540	5	ND	ND	ND	ND	ND	1,5	2.7
Tetrachloroethene	ug/L	5	88	1,500	3,820	5	1.6	1.3	0.4		语 第 17年		
	OU. DEWAL					HILL CHAIR	orotei.						
Lead	mg/L	0.015	0.013	NE	NE	0.05	ND	ND	0.0060	ND	ND	ND	ND
Соррег	mg/L	1.3	0.048	NE	NE	1.000	ND	ND	ND	ND	ND	ND	ND
Nickel	mg/L	0.100	0.880	NE	NE	NE	ND	ND	0.012		ND	ND	ND
Zinc	mg/L	5	0.1230	NE	NE	5	0.0140	0.0137	0.0242	0.059	ND	ND	0.049
· Iron	mg/L	NE	NE	NE	NE	0.30	0.05	ND	0.04	ND	0.11	ND	4.60
Cyanide	mg/L	0.2	0.052	NE	NE	0.20	ND	0.01	ND	ND	ŊD	· ND	ИD

Notes:

MW-4R installed on July 5, 2002 by Columbia Environmental Drilling.

= Remediation Standard Regulations (January 1996 and April 1999).

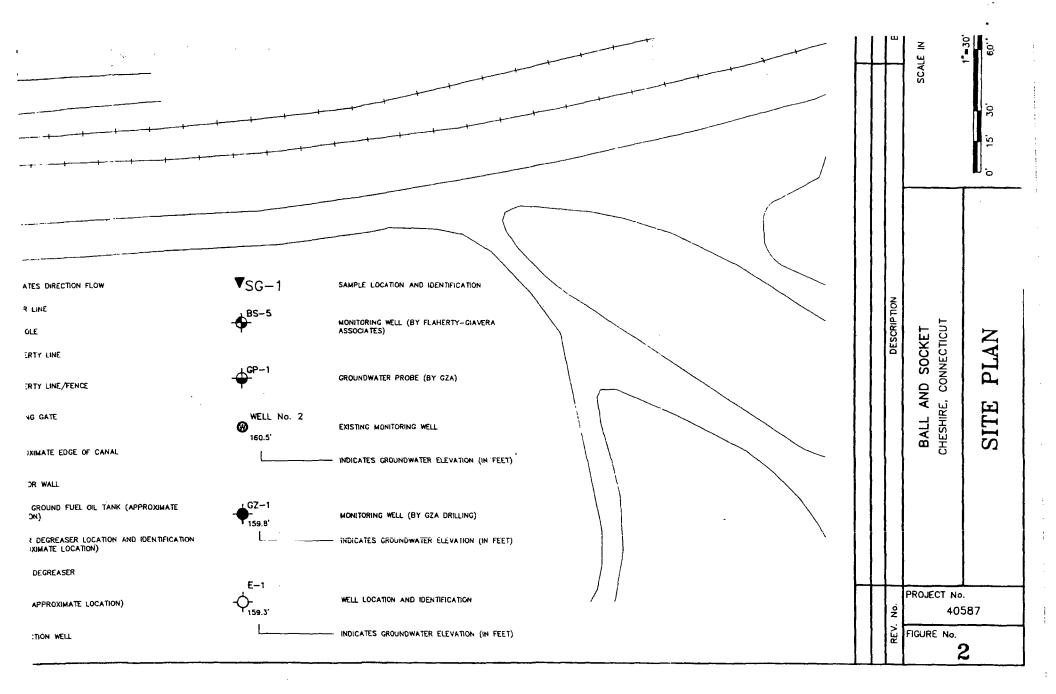
Bolded and Shaded Values Indicate an Exceedance of Applicable Remediation Standard Regulation Criteria.

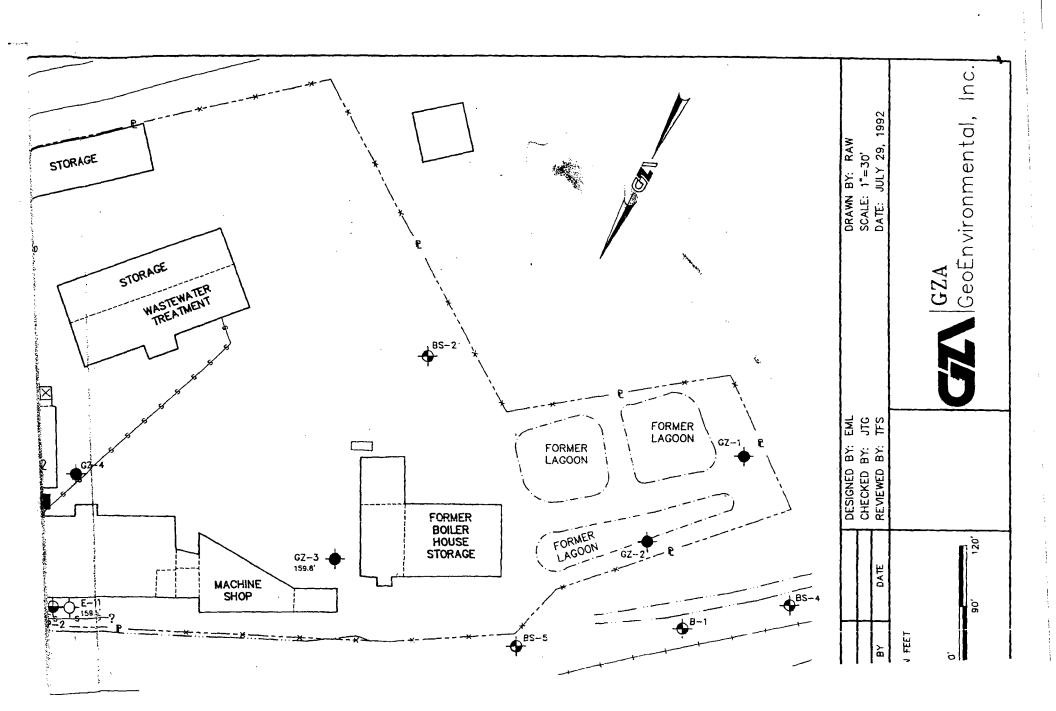
ug/L = micrograms per liter.

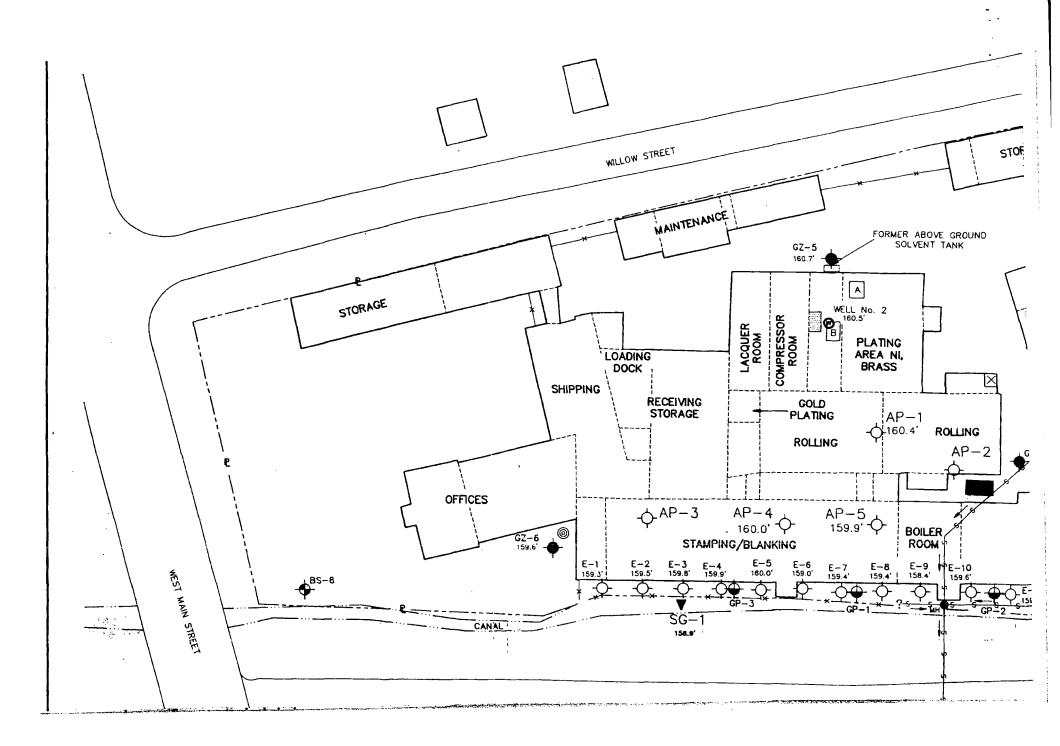
mg/L = miligrams per liter.

SWPC = Surface Water Protection Criteria.

GWPC = Ground Water Protection Criteria


MCL = Maximun Consentration Limit.


VC = Volatilization Criteria


I/C = Industrial/Commercial

Res. = Residential.

NE = Not Established by the CTDEP.

